QUALITATIVE INVESTIGATION OF A SYSTEM
 OF DIFFERENTIAL EQUATIONS OF THE THEORY OF OSCILLATIONS

(KACHESTVENNOE ISSLEDOVANIE ODNOL SISTEMY DIFFERENTSIAL' NYKH URAVNENII TEORII KOLEBANII)

PMM Vol.27, No.1, 1963, pp, 160-166

> N.N. SEREBRIAKOVA
> (Gorki)
> (Received July 2, 1962)

In this note there are given the results of a qualitative study of the system

$$
\begin{equation*}
\frac{d x_{1}}{d t_{1}}=x_{1}\left(m x_{1}+n y_{1}+p\right), \quad \frac{d y_{1}}{d t_{1}}=y_{1}\left(a^{\prime} x_{1}+b^{\prime} y_{1}+c^{\prime}\right) \tag{0.1}
\end{equation*}
$$

which arises in the theory of oscillations. Various particular cases of the system (0.1) have been investigated in a number of works. Applications of the method of Van der Pol to the action of an external force on a system with two degrees of freedom near a linear conservative system $[1-5]$, for example, lead to the system (0.1). Certain problems of chemical kinetics $[6-8]$, of astrophysics [9, 10], of mathematical biology [11-13], and of other fields can also be reduced to the solution of the system (0.1).

Jones [10] made some incorrect statements on the behavior of the separatrix, which led the author of that paper to false conclusions on the possibility of the existence of limit cycles for the system (0.1). A proof of the absence of limit cycles for the system (0.1) is given in [14].

1. None of the coefficients m, n and p vanishes. Making use of the transformation

$$
x_{1}=-\frac{p}{m} x, \quad y_{1}=\frac{p}{n} y, \quad t_{1}=\frac{t}{p}
$$

we can reduce the system (0.1) to the form

$$
\begin{equation*}
\frac{d x}{d t}=x(x+y+1), \quad \frac{d y}{d t}=y(a x+b y+c) \tag{1.1}
\end{equation*}
$$

Eliminating t, we obtain

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y(a x+b y+c)}{x(x+y+1)} \tag{1.2}
\end{equation*}
$$

The points

$$
P_{1}(0,0), \quad P_{2}\left(0,-\frac{c}{b}\right), \quad P_{3}(-1,0), \quad P_{4}\left(\frac{c-b}{b-a}, \frac{a-c}{b-a}\right) \quad \text { when } \Delta=\left|\begin{array}{ll}
1 & 1 \\
a & b
\end{array}\right| \neq 0
$$

represent the state of equilibrium of the system (1.1).
For the investigation of the nature of these points we find the roots λ_{1} and λ_{2} of the corresponding characteristic equations

$$
\begin{gathered}
\lambda_{1}=c, \quad \lambda_{2}=1 \text { for the point } P_{1} \\
\lambda_{1}=-c, \quad \lambda_{2}=(b-c) / b \text { for the point } P_{2} \\
\lambda_{1}=-1, \quad \lambda_{2}=c-a \text { for the point } P_{3} \\
\lambda_{1,2}=\frac{a b-b c+c-b \pm \sqrt{(a b-b c+c-b)^{2}-4(b-a)(c-b)(a-c)}}{2(b-a)} \text { for the point } P_{4}
\end{gathered}
$$

The integral curves (1.2) pass through the points P_{1}, P_{2} and P_{3}. These points can therefore be only nodes, or saddles.

If $(b-a)(c-b)(a-c)<0$, the point P_{4} will be a point of equilibrium of the saddle type. If, however, $(b-a)(c-b)(a-c)>0$, and $a b-b c+c-b=0$, then the system (1.1) has a center [14] at the point P_{4}.

For the purpose of revealing the behavior of the trajectories at infinity, we shall map the phase plane onto the sphere of Poincaré. Performing the transformation $x=1 / z, y=\tau / z$, we obtain

$$
\frac{d z}{d \tau}=\frac{-z(\tau+z+1)}{\tau[(b-1) \tau+(c-1) z+a-1]}
$$

Examining this equation, we find four points $P_{5}, P_{5}{ }^{\prime}, P_{6}$ and $P_{6}{ }^{\prime}$ on the equator of the sphere, which are pair-wise diametrically opposite to each other. The points P_{5} and P_{5} 'correspond to the positive and negative "ends", respectively, of the x-axis. while the points P_{6} and P_{6} ' are located at the ends of the diameter whose angular coefficient is equal to $(a-1) /(1-b)$ (we assume that the point P_{6} lies on the right half-plane).

Finding the roots λ_{1} and λ_{2} of the corresponding characteristic equations, we obtain

$$
\lambda_{1}=-1, \lambda_{2}=a-1 \quad \text { for } P_{5} ; \quad \lambda_{1}=1-a, \quad \lambda_{2}=(a-b) /(b-1) \quad \text { for } P_{6}
$$

Performing the transformation $x=\tau / z, y=1 / 2$, one can easily convince oneself that on the equator there exist still two special (singular) points P_{7} and P_{7}^{\prime} which coincide with the positive and negative ends, respectively, of the y-axis. The roots of the characteristic equation for the point P_{7} are $\lambda_{1}=-b, \lambda_{2}=1-b$.

Fig. 1.

We shall consider the dependence of the qualitative picture of the phase trajectories of the system (1.1) on the parameters. Fixing the parameter c, and drawing on the plane of the parameters a and b the lines $a-b=0, a-1=0, a-c=0, b-1=0, b-c=0$, and $a b-b c+$ $c-b=0$ when $(b-a)(c-b)(a-c)>0$, which correspond to the bifurcation values of the parameters a and b, we obtain a division of the plane a, b into regions, to each of which there corresponds a definite qualitative picture of the breaking up of the trajectory (Fig. 1) of the lower hemisphere of Poincare for the system (1.1). Hereby it is necessary to consider three cases: (1) $1<c<\infty$, (2) $-\infty<c<0$, (3) $0<$ $c<1$.

The results of the investigation of the special points $P_{1}, \ldots, P_{7}{ }^{\prime}$ for each of these cases are given in Table 1.*

[^0]When $0<c<1$, the qualitative picture of the phase trajectories in the regions
$\{1\}(-\infty<a<c, 1<b<\infty),\{3\}(1<a<b, 1<b<\infty), \quad\{4\}(b<a<\infty, 1<b<\infty)$ $\{3 a\}(-\infty<a<b, 0<b<c), \quad\{4 a\}(b<a<c, 0<b<c), \quad\{10\}(1<a<\infty, 0<b<c)$
$\{3 b\}(1<a<\infty,-\infty<b<0), \quad\{1, b\}(b<a<c,-\infty<b<0)$,

$$
\{11\}(-\infty<a<b,-\infty<b<0)
$$

are the same as in the corresponding regions when $1<c<\infty$.
Suppose, furthermore, that

$$
\Delta=\left|\begin{array}{ll}
1 & 1 \\
a & b
\end{array}\right|=0 \quad \text { or } \quad a=b
$$

Then, if $a=b \neq 1$, the point P_{4} will pass onto the equator, and it Will form there a complicated singular point of the type of a saddlenode.

Let us consider the case when $a=b=1$. The points $P_{1}(0,0)$, $P_{2}(0,-c), P_{3}(-1,0)$ are the state of equilibrium of the system (1.1). It is easy to see that the equator will not be an integral curve in this case. In Table 2 there are given the results of the investigation of the singular points of the system (1.1) for $a=b=1$.

TABLE 1.

No	Regions	Points									
		P_{1}	P_{2}	P_{3}	P،	P_{0}	$P_{\text {a }}$	p_{1}	r_{i}	P_{7}	$P_{\text {i }}$
$1<c<\infty$											
\{1\}	$\infty<a<1, c<b<\infty$	α_{2}	r	\boldsymbol{r}	$\alpha_{1}\left(\beta_{1}\right)$	${ }_{\sim}^{\alpha}$	α_{2}	x_{1}	r r_{2}	α_{1}	α_{2}
\{2\}	$1<a<c, c<b<\infty$	x_{2}	γ	r	$\alpha_{1}\left(\beta_{1}\right)$	r	γ	${ }^{1}$	${ }^{1}$	α_{1}	α_{2}
\{3)	$c<a<b, c<b<\infty$	α_{2}	r	x_{1}	r	γ	γ	α_{1}	α_{2}	α_{1}	α_{3}
\{4\}	$b<a<\infty, c<b<\infty$	α_{2}	γ	${ }_{1}$	$\alpha_{1}\left(\beta_{1}\right)$	γ	γ	γ	γ	α_{1}	α_{2}
\{5\}	$c<a<\infty, 1<b<c$	α_{2}	x_{1}	x_{1}	,	r	γ	γ	γ	x_{1}	α_{2}
\{6\}	$b<a<c, 1<b<c$	a_{2}	a_{1}	γ	* 1, 2, 3	r	r	γ	γ	${ }^{1}$	α_{2}
\{7\}	$1<a<b, 1<b<c$	α_{2}	α_{1}	γ	\boldsymbol{r}	T	r	a_{1}	α_{2}	χ_{1}	α_{2}
\{8)	$-\infty<a<1,1<b<c$	α_{2}	x_{1}	γ	γ	α_{1}	x_{2}	γ	r	α_{1}	α_{2}
\{9\}	$1<a<c, 0<b<1$	x_{2}	α_{1}	r	$\alpha_{1}\left(\beta_{1}\right)$	γ	r	x_{1}	α_{2}	γ	γ
\{10\}	$c<a<\infty, 0<b<1$	α_{3}	α_{1}	α_{1}	γ	r		x_{1}	${ }^{1}$	r	r
\{11\}	$-\infty<a<b,-\infty<b<0$	x_{2}	γ	r	γ	${ }_{1}$	α_{2}	${ }^{1}$	α_{1}	χ_{2}	α_{1}
\{1.b\}	$b<a<1,-\infty<b<0$	x_{2}	r	r	$\alpha_{1}\left(\beta_{1}\right)$	${ }_{1}$	α_{2}	,		x_{2}	x_{1}
\{2.b\}	$1<a<c,-\infty<b<0$	x_{2}	r	r	$\alpha_{1}\left(\beta_{1}\right)$	r	r	${ }_{1}$	α_{2}	χ_{2}	a_{1}
\{3. $a\}$	$-\infty<a<b, 0<b<1$	α_{2}	α_{1}	γ	\boldsymbol{r}	χ_{1}	${ }^{2}$	a_{2}		r	r
\{3.b)	$c<a<\infty,-\infty<b<0$	x_{8}	r	α_{1}	γ	γ	\%	α_{1}	α_{2}	x_{2}	${ }_{1}$
(4. a)	$b<a<1,0<b<1$	α_{2}	α_{1}	r	$\alpha_{1}\left(\beta_{1}\right)$	α_{1}	a_{2}	$\boldsymbol{\gamma}$	r	γ	γ

Table 1 contd.:

Nz	Regions	Points									
		P_{1}	P_{2}	P_{3}	P_{6}	$P_{\text {b }}$	P_{6}^{\prime}	P.	P^{\prime}	P_{7}	P_{i}
$-\infty<c<0$											
\{13\}	$c<a<1,1<b<\infty$	γ	α_{2}	α_{1}	γ	α_{1}	α_{2}	γ	r	x_{1}	α_{2}
\{14\}	a $a<b, 1<b<\infty$	γ	α_{2}	α_{1}	γ	γ	γ	a_{1}	α_{2}	x_{1}	α_{2}
\{15\}	$b<a<\infty, 1<b<\infty$	γ	α_{2}	α_{1}	$\alpha_{1}\left(\beta_{1}\right)$	γ	γ	γ	γ	α_{1}	α_{1}
$\{16\}$	$1<a<\infty, 0<b<1$	γ	α_{2}	α_{1}	* 1, 2, 3	γ	γ	α_{1}	α_{2}	γ	\boldsymbol{r}
\{17)	$-\infty<a<c, 0<b<1$	γ	α_{2}	γ	$\alpha_{1}\left(\beta_{1}\right)$	x_{1}	α_{2}	α_{2}	α_{1}	γ	\boldsymbol{r}
\{18\}	$-\infty<a<c, c<b<0$	γ	r	γ	** 1, 2, 3	x_{1}	a_{2}	a_{2}	α_{1}	x_{2}	α_{1}
\{19\}	$c<a<b, c<b<0$	γ	γ	α_{1}	γ	a_{1}	α_{2}	α_{2}	α_{1}	α_{2}	α_{1}
$\{12 . b\}$	$b<a<c,-\infty<b<c$	γ	α_{2}	γ	$\alpha_{1}\left(\beta_{1}\right)$	α_{1}	α_{2}	γ	γ	x_{2}	α_{1}
$\{12 . d\}$	$b<a<1, c<b<0$	γ	r	α_{1}	$\alpha_{2}\left(\beta_{2}\right)$	a_{1}	α_{2}	γ	γ	α_{2}	α_{1}
$\{13 . b\}$	$<a<1,-\infty<b<c$	γ	α_{2}	α_{1}	$\boldsymbol{\gamma}$	α_{1}	α_{2}	γ	γ	x_{2}	α_{1}
$\{14.6\}$	$1<a<\infty,-\infty<b<c$	r	α_{2}	α_{1}	γ	γ	τ	α_{1}	α_{2}	α_{2}	α_{1}
\{14. $c\}$	$c<a<b, 0<b<1$	r	α_{2}	α_{1}	γ	α_{1}	α_{2}	α_{2}	α_{1}	γ	γ
\{15.c\}	$b<a<1,0<b<1$	r	α_{2}	α_{1}	$\alpha_{2}\left(\beta_{2}\right)$	α_{1}	α_{2}	r	r	γ	γ
$\{17 . d\}$	$1<a<\infty, c<b<0$	γ	γ	α_{1}	$\alpha_{2}\left(\beta_{2}\right)$	r	r	α_{1}	α_{2}	α_{2}	α_{1}
$\{19 . e\}\}$	$-\infty<a<b,-\infty<b<c$	γ	α_{2}	r	γ	α_{1}	α_{2}	α_{2}	α_{1}	α_{2}	α_{1}
$0<c<1$											
$\{2 . a\}$	$\begin{gathered} -\infty<a<c, c<b<1 \\ c<a<1,0<b<c \\ b<a<1, c<b<1 \\ c<a<b, c<b<1 \\ c<a<1,1<b<\infty \\ c<a<1,-\infty<b<0 \\ 1<a<\infty, c<b<1 \end{gathered}$		α_{2} γ γ		$\alpha_{1}\left(\beta_{1}\right)$		α_{2}	α_{2}	α_{1}	γ	γ
$\{5 . a\}$			α_{1}	α_{1}	Y		α_{2}	γ	γ	γ	τ
$\{6 . a\}$			γ	α_{1}	* 1, 2, 3	α_{1}	α_{2}	γ	τ	γ	γ
\{7.a\}			γ		γ	x_{1}	α_{2}	a_{2}	α_{1}	γ	γ
$\{8 . a\}$			γ		γ		α_{2}	\boldsymbol{r}	γ	α_{1}	α_{2}
$\{8 . e\}$			γ	α_{1}	~		α_{2}	r	γ	α_{2}	α_{1}
\{9.a\}			γ	α_{2}	$\alpha_{1}\left(\beta_{1}\right)$		γ	α_{1}	α_{2}	γ	γ
	$\left(\begin{array}{l}1) \\ \text { 2) } \\ \text { 2) center when } \\ 3)\end{array}\right.$				$-c-$ $-c-$ $-c-$	+ +	$b c$	0 0	$=0$ <0		

2. Some of the coefficients of the first and second equation of the systen (0.1) vanish. a) Suppose that $p=a^{\prime}=0$. Performing the transformation

[^1]$x_{1}=\frac{c^{\prime}}{m} x, \quad y_{1}=\frac{c^{\prime}}{n} y, \quad t_{1}=\frac{1}{c^{\prime}} t$
and eliminating t we obtain the equation
\[

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y(b y+1)}{x(x+y)} \tag{2.2}
\end{equation*}
$$

\]

The equation (2.2) has three singu- $P_{3}(1 / b,-1 / b)$ on the $x y$-plane. On the equator there exist six pair-wise diametrically opposed points: P_{4} and $P_{4}{ }^{\prime}$ coinciding with the positive and negative ends, respectively, of the x-axis; P_{5} and P_{5}, located at the ends of the diameter whose angular coefficient is equal to $1 /(b-1) ; P_{6}$ and P_{6}, located at the positive and negative ends, respectively, of the y-axis (we assume that the point P_{5} is located on the right half-plane). The results of the study of these points are given in Table 3.
b) Suppose that $p=b^{\prime}=0$. Performing the

Fig. 2. transformation (2.1) and eliminating the parameter, we obtain the equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y(a x+1)}{x(x+y)} \tag{2.3}
\end{equation*}
$$

On the $x y$-plane the equation (2.3) has two singular points $P_{1}(0,0)$, and $P_{2}(-1 / a, 1 / a)$. On the equator there are six pair-wise diametrically opposite points: P_{3} and $P_{3}{ }^{\prime}$ coinciding with the positive and negative ends, respectively, of the x-axis; P_{4} and $P_{4}{ }^{\prime}$. located on the ends of the diameters whose angular coefficient is equal to $a-1 ; P_{5}$ and P_{5}^{\prime} coinciding with the ends of the positive and negative ends, respectively, of the y-axis (the point P_{4} is located on the right half-plane). The results of the study of these points are given in Table 4.
table 3.

, ${ }^{\text {N }}$	Regions	Points								
		P_{1}	P_{2}	P_{3}	P.	P_{i}	P_{5}	P_{8}	P_{6}	P_{0}^{\prime}
\{22\}	$-\infty<b<0$	γ^{x}	r	α_{1}	α_{1}	α_{2}	γ	r	α_{2}	α_{1}
\{23\}	$0<b<1$	$\underset{\sim}{\gamma} \underset{\sim}{x}$	α_{1}	$\underset{\gamma}{\gamma}$	a_{1} x_{1}	α_{2} α_{2}	${ }_{\sim}^{\alpha_{2}}$	$\stackrel{\alpha_{1}}{\gamma}$	${ }_{\alpha}^{\gamma}$	$\stackrel{\gamma}{\alpha_{n}}$

table 4.

N	Regions	Points							
		P_{1}	P_{2}	$\cdot P_{2}$	$P_{s}{ }^{\prime}$	P_{4}	$P_{0}{ }^{\prime}$	P_{5}	$P_{s}{ }^{\prime}$
\{25\}	$-\infty<a<0$	γx		α_{1}	α_{2}	α_{2}	α_{1}	γ	α_{1}
\{26\}	$0<a<1$	γx	$\chi_{1}\left(3_{1}\right)$	α_{1}	x_{2}	T	\cdots	r	${ }_{1}^{1}$
\{27)	$1<a<\infty$	γx	$\chi_{1}\left(\beta_{1}\right)$	γ	r	α_{1}	α_{2}	γ	α_{1}

c) Suppose that $p=c^{\prime}=0$. Setting $x_{1}=x / m, y_{1}=y / n$ in the system (0.1), and eliminating the parameter, we obtan

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y(a x+b y)}{x(x+y)} \tag{2.4}
\end{equation*}
$$

The equation (2.4) has a complicated singular point at the origin of the coordinate system. As in the previous case, there are six points on the equator: P_{2} and P_{2}^{\prime}, the ends of the x-axis; P_{3} and P_{3}^{\prime} coinciding with the diameter whose angular coefficient is equal to $(a-1) /(1-b)$; P_{4} and P_{4}, the ends of the positive and negative parts, respectively, of the y-axis (the point P_{2} and P_{3} are located on the right half-plane). In Fig. 2 there is represented the plane of the parameters a and b. The results of the study of the singular points in each of the regions of the plane of the parameters a and b are given in Table 5.
3. Results of the investigation. In Figs. 3 and 4 there are given the qualitative pictures of the division of the trajectories of the lower hemisphere of Poincaré for all cases considered. The qualitative pictures of the division for the cases $\{2 . a\},\{3, a\},\{4 . a\},\{5 . a\},\{6 . a\}$, $\{7 . a\},\{8 . a\},\{9 . a\},\{21 . a\},\{29, a\}$, and $\{30 . a\}$ could have been obtained by a rotation through 90° in the clockwise direction and a reflection with respect to the x-axis of the pictures $\{2\},\{3\},\{4\},\{5\},\{6\},\{7\}$, $\{8\},\{9\},\{21\},\{29\}$, and $\{30\}$. The qualitative pictures for the cases $\{1 . b\},\{2 . b\},\{3 . b\},\{12.6\},\{13 . b\},\{14 . b\},\{28 . b\}$, and $\{29 . b\}$ can be obtained by means of a reflection with respect to the x-axis of the phase pictures $\{1\},\{2\},\{3\}\{12\}\{13\}\{14\}\{28\}$, and $\{29\}$. The qualitative pictures of the division of the trajectories for the cases $\{14 . c\}$ and $\{15 . c\}$ can be obtained by means of a rotation through 90° in the counter-clockwise direction and a reflection with respect to the x axis, from the pictures $\{14\}$ and $\{15\}$ if one hereby also reverses the direction along the trajectory. In an analogous manner one can obtain the pictares for $\{12 . d\}$ and $\{17 . d\}$ by a rotation through 90° in the counter-clockwise direction of the phase pictures of $\{12\}$ and $\{17\}$ provided one changes the direction along the trajectory. The qualitative picture of the division of the lower hemisphere for the case \{8.e\} can

Fig. 3.
be obtained by a rotation through 90° in the clockwise direction of the phase picture \{8\}. In order to obtain the qualitative picture of the lower hemisphere for the case $\{19 . e\}$, it is necessary to make a reflection with respect to the x-axis of the picture $\{g\}$ and to change the direction along the trajectory, in addition to an original rotation through 90° in the clockwise direction.

TABLE 5.

Ni	Regions	Points						
		P_{1}	P_{2}	P_{2}	Ps,	$P:$	P.	P_{4}^{\prime}
\{28\}	$-\infty<a<1,1<b<\infty$	δ	a_{1}	α_{2}	γ	γ	α_{1}	α_{2}
\{29\}	$1<a<b, 1<b<\infty$	δ	γ	γ	x_{1}	α_{2}	χ_{1}	α_{2}
\{30\}	$b<a<\infty, 1<b<\infty$	δ	γ	γ	\boldsymbol{r}	r	α_{1}	α_{2}
\{31\}	$1<a<\infty, 0<b<1$	δ	γ	γ	α_{1}	α_{2}	γ	γ
\{32 \}	$-\infty<a<b,-\infty<b<0$	δ	α_{1}	r_{2}	α_{2}	x_{1}	α_{2}	α_{1}
\{28.6\}	$b<a<1,-\infty<b<0$	δ	χ_{1}	α_{2}	γ	γ	α_{2}	x_{1}
\{29.a\}	$\infty<a<b, 0$	8	x_{1}	α_{2}	x_{2}	α_{1}	γ	γ
$\{29.6\}$	$1<a<\infty,-\infty<b<0$	δ	τ	τ	α_{1}	α_{2}	α_{2}	α_{1}
\{30.a\}	$b<a<1,0<b<1$	δ	α_{1}	x_{2}	\boldsymbol{r}	γ	γ	γ

Fig. 4.

In conclusion I thank N. N. Bautin for many suggestions.

BIBL IOGRAPHY

1. Maier, A. G., K teorii sviazannykh kolebanil dvukh samovozbuzhdennykh generatorov (On the theory of coupled oscillations of two self-exciting generators). Uch. zap. Gorkovskogo in-ta No. 2 , 1935.
2. Mayer, A., A contribution to the theory of forced oscillations in a generator with two degrees of freedom. Technical Physics of the USSR Vol. 3, No. 12.
3. Butenin. N.V., Mekhanicheskie avtokolebatel' nye sistemy s giroskopicheskimi sllami (Mechanical self-oscillatory systems with gyroscopic forces). PMM Vol. 6, No. 5, 1942.
4. Butenin, N. V., Deistrie vneshnei sinusoidal'noi sily na avtokolebatel'nuiu sistemu giroskopicheskimi silami (Action of an external sinusoidal force on a self-oscillatory system with gyroscopic forces). Tr. LKVVA No. 7. 1945.
5. Butenin, N.V., K teorii vynuzhdennykh kolebanif v nelineinoi mekhanicheskoi sisteme s dvumia stepen' iami svobody (On the theory of forced oscillations in a nonlinear mechanical system with two degrees of freedom). PMM Vol. 13, No. 4, 1949.
6. Lotka, J., Undamped oscillations derived from the law of mass action. J. Amer. Chem. Soc. Vol. 42, No. 8, pp. 1595-1599, 1920.
7. Frank-Kamenetskii, D.A., Periodicheskie protsessy v kinetike okislitel'aykh reaktsii (Periodic processes in the kinetics of oxidizing reactions). Dokl. Akad. Nauk SSSR Vol. 25, No. 8, 1939.
8. Frank-Kamentskii, D.A. and Sal'nikov, I.E., 0 vozmozhnosti avtokolebanii v gomogennoi khimischeskoi sisteme pri kvadratichnom avtokatalize (On the possibility of the occurrence of auto-oscillations in a homogeneous chemical system during a second order autocatalysis). ZhFKh (Journal of Physical Chemistry) Vol. 17, No. 2, 1943.
9. Chandrasekhar, S. Vuedenie vuchenie o stroenii zuezd (Introduction into the Study of the Structure of Stars). IL, 1950.
10. Jones, C. $\begin{aligned} & \text {., On reducible nonlinear differential equations occurring }\end{aligned}$ in mechanics. Proc. Roy. Soc. Vol. 217, No. 1130, 1953.
11. Lotka, J., Elements of Physical Biology. Baltimore, 1925.
12. Volterra, V., Leģons sur la Théorie Mathématique de la Lutte pour la Vie. Paris, 1932.
13. Kostizin, V.A., Symbiose, Parasitisme et Evolution. Hermann, Paris, 1934.
14. Bautin, N.N., O periodicheskikh resheniiakh odnoi sistemy differentsial' nykh uravnenii (On the periodic solutions of a system of differential equations). PMM Vol. 18, No. 1, 1954.

[^0]: * In the tables we use the following notation: α_{1} is a stable node, α_{2} is an unstable node, β_{1} is a stable focus, β_{2} is an unstable focus, γ is a saddle, $\gamma \alpha$ is a saddle-node, δ is a complicated singular point which is obtained when four coarse singular points merge.

[^1]: * The case when some of the coefficients m, n and p vanish, but none of the numbers a^{\prime}, b^{\prime} and c^{\prime} vanish, can be reduced to the case considered by means of a change of variables.

