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In this note there are given the results of a qualitative study of the 
system 

dxl -==l(ma+nYl+P), 
dh 

$l = y1 (a'z1 -I- a'yl+ c’) w 

which arises in the theory of oscillations. Various Particular cases of 
the system (0.1) have been investigated in a number of works. Appiica- 
tions of the method of Van der Pol to the action of an external force 
on a system with two degrees of freedom near a linear conservative 
system [l-51, for example, lead to the system (0.1). Certain probl’ems 
of chemical kinetics /%-81, of astrophysics 19.101, of mathematical 
biology cll-131, and of other fields can also be reduced to the solution 
of the system (0. I). 

Jones made some incorrect statements on the behavior of the 

separatrix, which led the author of that paper to false conclusions on 
the possibility of the existence of limit cycles for the system (0.1). 
A proof of the absence of limit cycles for the system (0.1) is given in 

Err]. 

1. None of the coefficients a, n and p vanishes. Making use of the 
transformation 

we can reduce the system (0.1) to the form 

227 
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dx 
-==((5+y+l), s=Y(ax+bY+c) 
dt 

Eliminating t, we obtain 

dy -= Y (ax + bY + 4 
dx x(x+v+l) 

(1.a) 

(1.2) 

The points 

Pl w% PI(O, -$-) , Ps(-i,O), Pd(e, E) when A=I: :I#0 

represent the state of equilibrium of the system (1.1). 

For the investigation of the nature of these points we find the roots 

h, and h, of the corresponding characteristic equations 

hl = c, hz = i for the point P, 

xi = - c, hz = (b---)/b for the point P, 

hl=---l, hz = c-a for the point P, 

A,,, = ab -~c+c-b~~(ab-bbc+e-b)~-4(b-a)(c-bb)(a-~forthepoint~ 

2 (b - a) 4 

The integral curves (1.2) pass through the points PI, P2 and P3. 

These points can therefore be only nodes. or saddles. 

If (b - a)(c - b)(a - c) < 0, the point P, will be a point of equi- 

librium of the saddle type. If, however, (b - a)(~ - b)(a - c) > 0, and 

ab - bc + c - b = 0. then the system (1.1) has a center [141 at the 

point P,. 

For the purpose of revealing the behavior of the trajectories at in- 

f inity. we shall map the phase plane onto the sphere of Poincar6. Per- 

forming the transformation x = l/z, y = -r/z. we obtain 

ds -= --@+Z+U 
dr t [(b - 1) r + (c - 1) z + a - I] 

Examining this equation, we find four points P,, P,‘, P6 and P,’ on 

the equator of the sphere, which are pair-wise diametrically opposite 

to each other. The points Pg and P5’ correspond to the positive and 

negative “ends”, respectively, of the x-axis, while the points p, and 

p, ’ are located at the ends of the diameter whose angular coefficient 

is equal to ((1 - l)/(l - b) (we assume that the point P, lies on the 

right half-plane). 
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Finding the roots A, and h, of the corresponding characteristic egua- 
tions, we obtain 

IF -1, &=a-1 for Ps; J,r=l-a, h=(a-b)/(b-i) for Pe 

Performing the transformation x = T/Z, y = l/z, one can easily con- 

vince oneself that on the equator there exist still two special (singu- 
lar) points P, and P,’ which coincide with the positive and negative 
ends, respectively, of the y-axis. The roots of the characteristic ecua- 

tion for the point P, are hl = - b, h, = 1 - b. 

Fig. 1. 

We shall consider the dependence of the pualitative picture of the 
phase trajectories of the system (1.1) on the parameters. Fixing the 
parameter C, and drawing on the plane of the parameters a and b the 
linesa-b=O, a-1=0, a-c=O, b-1=0, b-c=O, andab-bc+ 
c - b = 0 when (b - a)(c - b)(a - c) > 0, which correspond to the bi- 
furcation values of the parameters a and b, we obtain a division of the 
plane a, b into regions, to each of which there corresponds a definite 
qualitative picture of the breaking UP of the trajectory (Fig. 1) of the 
lower hemisphere of Poincare for the systaul (1.1). Hereby it is neces- 
sary to consider three cases: (1) 1 < c < m, (2) - m < c < 0, (2) 0 < 
c < 1. 

The results of the investigation of the special points P,, . . . . P,’ 

for each of these cases are given in Table 1. l 

l In the tables we use the following notation: aI is a stable node, a2 
is an unstable node. PI is a stable focus, p2 is an unstable focus, 
y is a saddle, ya is a saddle-node, 6 is a complicated singular point 
which is obtained when four coarse singular points merge. 
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When 0 < c < 1, the qualitative picture of 
the regions 

the phase trajectories In 

(3b) (1 <a < 00, --<b<Q, {l,b)(b<a<c, --oo<b<O), 
U1)t---<o<k --ao<b<O) 

are the same as in the corresponding regions when 1 < c < m. 

Suppose. furthermore, that 

a=b 

Then, if a = b f 1, the point P, will pass onto the equator, and it 
will form there a complicated singular point of the type of a saddle- 

node. 

Let us consider the case when a = b = 1. The points P1(O, 0), 

P*(O* -c), PJ(-1, 0) are the state of equilibrium of the system (1.1). 
It is easy to see that the equator will not be an integral curve in 
this case. In Table 2 there are given the results of the investigation 
of the singular points of the system (1.1) for a = 6 = 1. 

TABLE 1. 

Points 

-ce<a<l, c<b<m 
f<a<c, c<b<m 
c<a<b, c<b<- 
b<a<m, c<b<= 
c<a<=, l<b<c 
b<a<c, l<b<c 
l<dbt l<b<c 

-oo<a<l, t<b<c 

Ka<c, O<b<l 

c<a<=, O<b<f 
-w<a<b, --oo<b<f 

b<a<+, -m<b<i 

i<a<c, --oo<b<( 

--<a<<, O<b<l 

c<a<m -m<b<f 

b<a<l, O<b<f 
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Table 1 contd.: 

M Regions 

. ._ _ _ 

Points 

P, - ) P, ( Pi ( PI ( P.’ 1 PI ) P; 

--oo<c<o 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 
r 

a2 

a2 

a2 

a2 

a2 

a2 

-r 

T 

a2 

T 

a2 

a2 

a2 

a2 

T 

a2 

r 
al 

al 

al 

a1 

r 
r 

a1 

r 
al 

al 

al 

al 

al 

al 

r 

{Ia -oo<a<c, l<b<m 

(131 c<a<l, l<b<oo 

(141 l<a<b, l<b<m 

(151 b<a<m, l<b<@ 

{I61 i<a<m, Q<b<l 

(171 --Oo<a<c, O<b<l 

(18) -co<a<c, c<b<O 

(191 c<a<b, c<b<O 
(12. b b<a<c, --m<b<c 

(12. d b<a<i, c<b<O 
(13. b c<a<l, --oo<b<c 
(14. b l<a<m, --oo<b<c 

{14. c c<a<b, O<b<l 
(15. c b<a<l, O<b<l 
j17. d l<a<m, c<b<O 
{lg. e, - =<a<b. -co<b<l 

--<a<<, c<b<l a2 

c<a<i, O<b<c zz 
b<a<l, c<b<l a2 

c<a<b’ c<b<l a2 

c<a<l, l<b<oo a2 
c<a<l, --oc<b<O a2 

1<a<m, c<b<f i a2 

1) stable node (focus) when 

2) center when 

al (PI) 
r 
r 

al (PI) 
*1,2,3 

al (PI) 
I* 1,2,3 

r 

al 01) 

a2 (I321 

7 

+r 

r 

a2 (B2) 

a2 02) 

T 

al 

al 

r 
r 
r 
1x1 

a1 
al 

Ql 
'Jl 
al 

r 
al 

al 

r 
al 

al 

al 

al 

a1 
al 

al 

r 

aa 
aa 
r 
r 
r 

a2 

a2 

a2 

a2 

a3 
a2 
r 

a2 

a2 

T 

a2 

a2 

a2 

a2 

ua 

a2 

a2 

7 

r 
r 
al 

r 
a1 

a2 
a2 

aa 
r 
-l 
r 

al 

a2 
r 
al 

a2 

a2 
r 
r 
aa 
r 
r 
a1 

r 
r 

a2 

r 
a% 
ai 
al 

al 

r 
r 
r 

a2 

al 

r 
a2 

al 

al 

r 
r 

al 

r 
r 

a2 

al 

Xl 
Xl 
Xl 
r 
r 

32 

a2 

z2 

a2 

%a 

a2 

r 

T 

a2 

a2 

T 

T 

-r 

r 

a1 

a2 

T 

az 
a2 

aa 
aa 
r 
r 
a1 

a1 

a1 

a1 

a1 

a1 

r 
r 
al 

al 

r 
r 
r 
r 

a2 

a1 

t 

13) unstable node (focus) when b - c - ab + bc > 0 1 < 0 1 

2. Some of the coefficients of the first and second equation* of the 

system (0.1) vanish. a) Suppose that p = a’ = 0. Performing the trans- 

formation 

* The case when some of the coefficients n, n and p vanish, but none 

of the numbers a’, b’ and c’ vanish, can be reduced to the case con- 
sidered by means of a change of variables. 
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, 
aTI== Lx, y, = .Ly, t1 = f t (2.1) 

m n 

TABLE 2. 

a=b= 1 
and eliminating t we obtain the equa- 
tion 

Y @I/ + 1) 

Eva 1 Regions 1 p, ;“Etr ,,s 

_a= 
dz 1 (x + Y) (2.2) if:; 1 ;y-$.y / za / “r” / :; 

The equation (2.2) has three singu- (22*4). lcccoo aa d1 T 

lar points P,(O, 0). P2(0. -l/b), and 

pj(l/b, -l/b) on the xy-plane. On the 
equator there exist six pair-wise diametrically opposed points: P, and 

5’ coinciding with the positive and negative ends, respectively, of 
the x-axis; P, and P, ‘, located at the ends of the diameter whose 
angular coefficient is equal to l/(b - 1); P, and P,‘, located at the 
positive and negative ends, respectively, of the y-axis (we assume i;hat 
the point P5 is located on the right half-plane). The results of thl 
study of these points are given in Table 3. 

b) Suppose that p 

transformation (2.1) 
meter, we obtain the 

&I _ 

=b * = 0. Performing the 
and eliminating the Para- 
equation 

?/iQX-l-1) 
dz- x(z+y) 

(2.3) 

On the xy-plane the equation (2.3) has two 
singular points P,(O, O), and Pp(-l/a, l/a). On 

Fig. 2. the equator there are six pair-wise diametrically 
opposite points: P, and P,’ coinciding with,the 

positive and negative ends, respectively, of the x-axis; P4 and P, , 
located on the ends of the diameters whose angular coefficient is equal 
to 4 - 1; P5 and P, ’ coinciding with the ends of the positive and nega- 
tive ends, respectively, of the y-axis (the point P, is located on the 

right ha1 f-plane). The results of the study of these points are given 

in Table 4. 

TABLE 3. 
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TABLE 4. 

_____-.___--____~~ ___- 
I I Points 

a? I Regions 
( P’t / Pi-I-P. 1 PL( P‘ 1 P;(P&(P, 

.- * 

c) Suppose that p = c’ = 0. Setting x1 = x/m, yl = y/n in the system 
(0. I), and eliminating the parameter, we obtan 

c&J=: Y (et + by) 
dr x tz + ?/I 

(2.41 

The equation (2.4) has a complicated singular point at the origin of 
the coordinate system. As in the previous case, there are six points on 
the equator: P, and P, ‘, the ends of the x-axis; P3 and P3’ coinciding 
with the diameter whose angular coefficient is equal to (a - l)/(l - b); 

P4 and P, ‘, the ends of the positive and negative parts, respectively, 
of the y-axis (the point P, and P, are located on the right half-plane). 
In Fig. 2 there is represented the plane of the parameters a and b. The 
results of the study of the singular points in each of the regions of 
the plane of the parameters a and b are given in Table 5. 

3. Results of the investigation, In Figs. 3 and 4 there are given 
the qualitative pictures of the division of the trajectories of the 
lower hemisphere of Poincare for all cases considered. The qualitative 
pictures of the division for the cases (2.a). (3.a). 14. a), (5. a), {&a), 
{?.a), (8.~~1. (9.0). {21.=}, {ZQ,a). and (30. a) could have been obtained 
by a rotation through QO* in the clockwise direction and a reflection 
with respect to the x-axis of the pictures (2). (31, (41, (51, (61, (71, 
181, (91, 1211, (291, and (30). The qualitative pictures for the cases 
(1. b), (2.b). {3.b), (12. b), {13.b), (14. b), (28.b). and (29.b) can be 
obtained by means of a reflection with respect to the x-axis of the 
phase pictures {l), (2). (3) (12) cl31 (14) (281, and (29). The 
qualitative pictures of the division of the trajectories for the cases 
(14.~1 and (15.~1 can be obtained by means of a rotation through QO* in 
the counter-clockwise direction and a reflection with respect to the x- 
axis, from the pictures (14) and (15) if one hereby also reverses the 
direction along the trajectory. In an analogous manner one can obtain 
the pictures for (12.d) and (17.d) by a rotation through 90’ in the 
counter-clockwise direction of the phase pictures of (12) and (17) pro- 
vided one changes the direction along the trajectory. The qualitative 
picture of the division of the lower hemisphere for the case (8.e) can 
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Fig. 3. 

be obtained by a rotation through 90° in the clockwise direction of the 

phase picture (8). In order to obtain the qualitative picture of the 

lower hemisphere for the case (19.e). it is necessary to make a reflec- 

tion with respect to the x-axis of the picture (9) and to change the 

direction along the trajectory, in addition to an original rotation 

through 90° in the clockwise direction. 
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TABLE 5. 

JM Regions 
Points 

p, ( P* 1 p,’ 1 P, 1 PI’ 1 Pa 1 P. 

-w<a<l, l<b<m 
t<n<b, t<b<= 
b<a<c-, i<b<= 
l<a<=, O<b<l 

-m<a<b,-w<bb<O 
b<a<l,--oo<b<O 

--oo<a<b, O<b<l 
I< a<=,---?o<b<O 
b<a<i, O<b<l 

al 
Y 
Y 
Y 
al 
a1 

, ? 
/ al 

a2 
Y 
Y 
Y 
z2 

312 

a2 

T 

312 

Y 
a1 
Y 
al 
a2 
Y 
32 

011 

7 

Y 
a2 
Y 
a2 
a1 
Y 
al 
a2 
Y 

a1 
31 
al 
Y 
a2 
a2 
7 
a2 
Y 

a2 

a2 

a2 

Fig. 4. 

In conclusion I thank N.N. Bautin for many suggestions. 
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